Class MannWhitney

java.lang.Object
edu.wisc.game.math.MannWhitney

public class MannWhitney extends Object
The Mann-Whitney math
  • Constructor Summary

    Constructors
    Constructor
    Description
     
  • Method Summary

    Modifier and Type
    Method
    Description
    static double
    count(double[] a, double[] b)
    How many pairs (i,j) exist where a[i] < b[j]? Ties are counted as 0.5.
    static void
    main(String[] argv)
     
    static double[][]
    ratioMatrix(double[][] z)
     
    static double[][]
    rawMatrix(double[][] a)
    The element z[i][j] of the results is equal to the number of pairs (k,m) such that a[i][k] < a[j][m].
    static void
    test1(String[] argv)
     
    static void
    test2(String[] argv)
     
    static double[]
    topEigenVector(double[][] a)
    Given a dense matrix with positive elements, find the eigenvector corresponding to the largest eigenvalue.

    Methods inherited from class java.lang.Object

    clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
  • Constructor Details

    • MannWhitney

      public MannWhitney()
  • Method Details

    • count

      public static double count(double[] a, double[] b)
      How many pairs (i,j) exist where a[i] < b[j]? Ties are counted as 0.5.
      Parameters:
      a - Ascending sorted
      b - Ascending sorted
    • rawMatrix

      public static double[][] rawMatrix(double[][] a)
      The element z[i][j] of the results is equal to the number of pairs (k,m) such that a[i][k] < a[j][m].
      Parameters:
      a - Each row of this matrix represent a "cloud" of points to be compared. It will be sorted.
    • ratioMatrix

      public static double[][] ratioMatrix(double[][] z)
      Parameters:
      z - The raw matrix
      Returns:
      w[i][j] = (z[i][j]+1)/(z[j][i]+1)
    • topEigenVector

      public static double[] topEigenVector(double[][] a)
      Given a dense matrix with positive elements, find the eigenvector corresponding to the largest eigenvalue. By Perron-Frobenius theorem, we know that such a vector exists, and is composed of positive elements.
    • test1

      public static void test1(String[] argv)
      Parameters:
      argv - a,b,c,d e,f,g
    • test2

      public static void test2(String[] argv)
      Parameters:
      argv - a,b,c,d e,f,g h,i,j,k,l ....
    • main

      public static void main(String[] argv)